A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems
نویسندگان
چکیده
Several a posteriori error estimators are introduced and analyzed for a discontinuous Galerkin formulation of a model second-order elliptic problem. In addition to residual-type estimators, we introduce some estimators that are couched in the ideas and techniques of domain decomposition. Results of numerical experiments are presented.
منابع مشابه
A-Posteriori Error Estimates for Discontinuous Galerkin Approximations of Second Order Elliptic Problems
Using the weighted residual formulation we derive a-posteriori estimates for Discontinuous Galerkin approximations of second order elliptic problems in mixed form. We show that our approach allows to include in a unified way all the methods presented so far in the literature.
متن کاملFunctional a Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems
In this paper, we develop functional a posteriori error estimates for DG approximations of elliptic boundary-value problems. These estimates are based on a certain projection of DG approximations to the respective energy space and functional a posteriori estimates for conforming approximations (see [30, 31]). On these grounds we derive two-sided guaranteed and computable bounds for the errors i...
متن کاملAdaptive Discontinuous Galerkin Methods for Fourth Order Problems
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential...
متن کاملResidual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...
متن کاملA RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS
In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2003